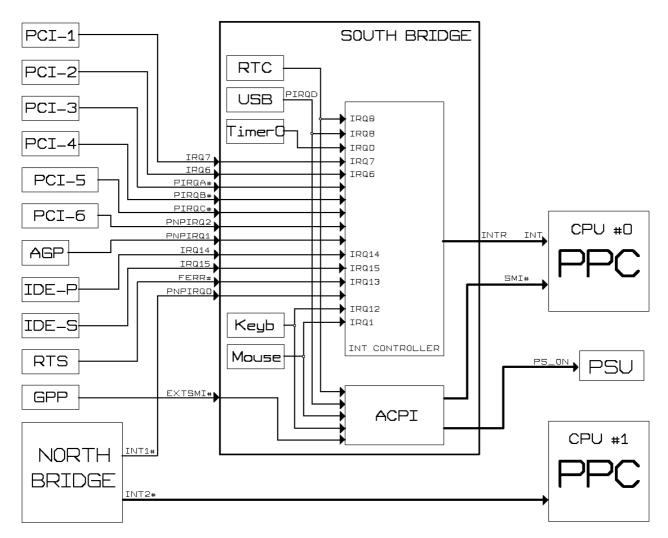

ROHB Riored Open Hardware Book


Rev. 0.7 - September, 14th 2000 - Rodolphe Czuba : rczuba@free.fr

- 1- Hardware overview
- 2- Interrupts
- 3- Clocks
- 4- SLOT P : PPC Processor slots
- 5- GPP : Geek & Panel Port
- 6- RTS : Remote Temperature Sensor
- 7- FTP : Flash Transfert Port
- 8- VRx : DC-DC Voltage Regulators
- 9- Parts references

1- HARDWARE OVERVIEW

2- INTERRUPTS

RIORED INT MAP - Rodolphe Czuba - March 2000

All the interrupts are treated by the CPU0. The CPU1 only treats one interrupt that is generated by a register of the CPC710 and presented on the pin INT1#. It allows the CPU0 to interrupt the CPU1 in the SMP architecture. The CPU1 cannot interrupt the CPU0.

SOURCE	VIPER PIN	VIPER IRQ	ROUT STATUS	COMMENTS
Timer_0		0	Fixed	System Timer
PS/2_Keyboard		1	Fixed	
USB / RTC		8	Free / Fixed	USB uses PIRQD#
CPC-710 DMA	PNPIRQ0	9	Free	Should be used for AGP.
AGP	PNPIRQ1	10	Free	
PCI_6	PNPIRQ2	11	Free	PCI-64
PS/2_Mouse		12	Fixed	
RTS	FERR#	13	Fixed	Remote Temperature Sensor
IDE_Primary	IRQ14	14	Fixed	
IDE_Secondary	IRQ15	15	Fixed	
PCI_5	PIRQC#	3	Free	PCI-64
PCI_4	PIRQB#	4	Free	PCI-32
PCI_3	PIRQA#	5	Free	PCI-32
PCI_2	IRQ6	6	Fixed	PCI-32
PCI_1	IRQ7	7	Fixed	PCI-32

AGP & PCI6 could be exchanged with IDE_P & IDE_S, because of the choice between IRQ[14,15] and [10,11] for the IDE ports. PNPIRQ[x] and IRQ[6,7] are logically inversed with a 74LVC04 circuit on the main board.

4- SLOT-P : The PPC Processor Slot

There are two processor slots on RIORED to allow a **SMP architecture with two identical processors**. The RIORED processor slot uses a SC242 connector (SLOT 1) and is called **SLOT-P.**

It is assumed that the reader is familiar with the 60x and MPX signals. For further information, please refer to the BUS INTERFACE MANUAL (MPCBUSIF/AD), the USER'S MANUAL (chapter 7) and the HARDWARE SPECIFICATION MANUAL of the apropriate processor.

A- 60x and MPX Bus Protocol Support

B- SLOT-P Functional Groupings

The SLOT-P supports the 60x bus protocol and the new MPX bus protocol first provided on MPC7400 (G4) processor.

MPX bus protocol is a enhanced 60x bus protocol that is selectable by the pin EMODE# on the G4.

The signals used for the 60x and MPX bus protocols are largely identical, except that the MPX bus mode doesn't use the ABB# and DBB# outputs (I/O on 60x & 7xx CPU), replaces the DBWO# input with the DTI[0:2] inputs, replaces the SHD# signal with SHD[0:1]# and adds the HIT# and DRDY# signals.

For this reason, like with the G4 pinout, some pins of the SLOT-P have two names separated by '-': the first name is for the 60x bus and the second name is for the MPX bus.

'#' signifies the signal is active at the low level

Some pins/signals are only provided for the MPX protocol and are so mentioned 'MPX'.

Pins/signals that are only used with 60x Bus Protocol are mentioned '60x'.

Address Arbitration	BR#, BG#, ABB#(60x)
Address Bus	A[0:31], AP[0:3], ARes[0:3]
Address Transfer Attributes	TS#, TT[0:4], TBST#, TSIZ[0:2], GBL#, WT#, CI#
Address Termination	AACK#, ARTRY#, SHD#-SHD0#(MPX), SHD1#(MPX), HIT#(MPX)
Data Arbitration	DBG#, DBB#(60x), DBWO#-DTI0(MPX), DTI1(MPX), DTI2(MPX), DRDY#(MPX)
Data Transfer	DH[0:31], DL[0:31] (D[32:63]), DP[0:7]
Data Termination	TA#, TEA#
Interrupts & Reset	INT#, SMI#, MCP#, CKSTP_IN#, CKSTP_OUT#, SRESET#, HRESET#
Processor Status & Control	RSRV#, TBEN, QREQ#, QACK#, EMODE#
Clock Control	SYSCLK
Test Interface (JTAG/COP)	TRST#, TMS, TCLK, TDI, TDO
Security	INTRUDER#, NC[0:4]
Power Supplies	VCC_CORE (16), CORE_VID (5), VCC_BUS (9), VCC_3.3 (4), VCC_5 (1), VCC_12 (1) The SC242 connector allows up to 1 Ampere per pin.
Grounds	GND (36)
Reserved	Reserved (6)

C- SLOT-P signals not used by RIORED R.1

The following signals are not used by RIORED R.1

ABB#, DBB#, WT#, CI#, DBWO#, CKSTP_OUT#, RSRV#, QREQ#, QACK#, EMODE# SHD1#(MPX), HIT#(MPX), DTI1(MPX), DTI2(MPX), DRDY#(MPX)

D- x86 SLOT 1 and Riored SLOT-P confusion

Two SC242 (commonly called SLOT1) connectors are used, but sure the pinout is not the same than the one of the Pentium II/III & CELERON SLOT1.

A particular attention was taken when designing the pinout of the SLOT-P to avoid some dramatical accidents when users may attempt to plug a P2/P3 daughter board on RIORED or, in the reverse way, to plug a PPC daughter card in the SLOT1 of a x86 main board...

If a x86 daughter card is plugged in the SLOT-P a signal (INTRUDER#) will keep the Riored power supply to turn on. Riored's electronic is so secured and the 'indruder' card too !

In the reverse way, if the user attempts to plug a PPC daughter card in the SLOT1 of a x86 PC main board, the VID[0:4] pins of the SLOT1 (called NC[0:4] on SLOT-P) will stay not connected (open) because of the fact that the NCx (Not Connected) pins on the PPC daughter card must never be connected. In this manner, the Voltage Switching Regulator of the x86 main board will be turned OFF (VID[0:4]=1111) and the

In this manner, the Voltage Switching Regulator of the x86 main board will be turned OFF (VID[0:4]=11111) and the PPC card is secured.

Keep in mind that plugging a x86 card in the SLOT-P or plugging a PPC card in the SLOT1 stills to be a big mistake that is DANGEROUS for your hardware ! But a such problem already exists in the x86 PC world with cards like ATHLON that use a SC242 connector with a different pinout than on SLOT1, called SLOT A...

E- Other signals of the SLOT-P

- A VCC_12 is provided to power a fan. The wires of the fan may be soldered on two dedicated pads, avoiding to use a fan connector on the main board.

- The four pins **ARes[0:3]** are reserved for the future 36-Bit Address (64GB memory range) bus provided on future PPC processors like the G4+.

- The INTRUDER# pin is the same pin number than the SLOTOCC# pin of the SLOT1.

This pin is always connected to ground on the P2/3 & Celeron daughter cards and must never be connected on a PPC daughter cards. See above sub-chapter (D) for the function of this pin.

- The pins **NC[0:4]** are the same pin numbers than the VID[0:4] pins of the SLOT1. These pins give the indication of the core voltage level on a x86 daughter card. They must never be connected on a PPC daughter card. See above sub-chapter (D) for the function of this pin.

F- 60x BUS signals not implemented on the SLOT-P and CPC-710

Only present on 601, 603 & 604 processors :	XATS#, APE#, DPE#, TCn#, CSEn
Only present on 601 processor :	QUIESC_REQ, SYS_QUIESC#, RESUME
Only present on 604 processor :	HALTED, RUN
Not present on G4 / Not recommended :	TLBISYNC#, DBDIS#, DRTRY#

601 and 604 Processors are now end-of-life. Use of the DBDIS# and DRTRY# signals is not recommended for new designs. DRTRY# must be grounded to select the no-DRTRY mode of the CPU.

SLOT-P PINOUT

SIGNAL NAME	PIN (L)	PIN (R)	SIGNAL NAME	SIGNAL NAME	PIN (L)	PIN (R)	SIGNAL NAME
VCC_12	A001	B001	GND	GND	A062	B062	DL14
GND	A002	B002	VCC_CORE	DL15	A063	B063	DL16
INT0#	A003	B003	VCC_CORE	DL17	A064	B064	DL18
SMI#	A004	B004	CORE_VID0	DL19	A065	B065	VCC_BUS
EMODE#	A005	B005	CORE_VID1	GND	A066	B066	DL20
GND	A006	B006	CORE_VID2	DL21	A067	B067	DL22
QACK#	A007	B007	VCC_CORE	DL23	A068	B068	DL24
QREQ#		A008	B008 VCC_CORE	DL25	A069	B069	VCC_BUS
RSRV#	A009	B009	CORE_VID3	GND	A070	B070	DL26
GND	A010	B010	CORE_VID4	DL27	A071	B071	DL28
SYSCLK	A011	B011	WT#	DL29	A072	B072	DL30
SHD#-SHD0#		B012	VCC_CORE	DL31	A073	B073	VCC_BUS
SHD1#	A013	B013			A 07 4	D074	DUO
BSEL1	A014	B014	CI#	GND	A074	B074	DH0
DBWO#-DTI0 DTI2	A015 A016	B015 B016	DTI1 DRDY#	DH1 DH3	A075 A076	B075 B076	DH2 DH4
A31	A010 A017	B010 B017	VCC CORE	DH3 DH5	A076 A077	B078 B077	VCC_BUS
GND	A017 A018	B017 B018	VCC_CORE	GND	A077	B078	VCC_В03 DH6
A30	A019	B019	A29	DH7	A079	B079	DH8
A28	A020	B020	Reserved	DH9	A080	B080	DH10
A27	A021	B020	A26	DH11	A081	B081	GND
GND	A022	B022	A25	GND	A082	B082	DH12
A24	A023	B023	A23	DH13	A083	B083	DH14
A22	A024	B024	A21	DH15	A084	B084	DH16
A20	A025	B025	VCC_CORE	DH17	A085	B085	VCC_BUS
GND	A026	B026	A19	GND	A086	B086	DH18
A18	A027	B027	A17	DH19	A087	B087	DH20
A16	A028	B028	A15	DH21	A088	B088	DH22
A14	A029	B029	VCC_CORE	DH23	A089	B089	VCC_BUS
GND	A030	B030	A13	GND	A090	B090	DH24
A12	A031	B031	A11	DH25	A091	B091	DH26
A10	A032	B032	A9	DH27	A092	B092	DH28
A8	A033	B033	VCC_CORE	DH29	A093	B093	VCC_BUS
GND	A034	B034	A7	GND	A094	B094	DH30
A6	A035	B035	A5	DH31	A095	B095	DP0
A4 A2	A036 A037	B036 B037	A3	DP1 DP3	A096 A097	B096 B097	DP2
GND	A037 A038	B038	VCC_CORE A1	GND	A097 A098	B097 B098	VCC_BUS DP4
A0	A039	B038 B039	ARes3	DP5	A099	B098 B099	DP6
ARes2	A033 A040	B040	ARes1	DP7	A033 A100	B100	GND
ARes0	A040	B040 B041	GND	TBST#	A101	B100	INTRUDER#
GND	A042	B042	AP0	GND	A102	B102	TSIZ0
AP1	A043	B043	AP2	TSIZ1	A103	B103	TSIZ2
AP3	A044	B044	GBL#	TT0	A104	B104	TT1
TBEN	A045	B045	VCC_CORE	TT2	A105	B105	VCC_BUS
GND	A046	B046	TS#	GND	A106	B106	TT3
TA#	A047	B047	BR#	TT4	A107	B107	MCP#
ARTRY#	A048	B048	DBG#	CKSTP_IN#	A108	B108	CKSTP_OUT#
TEA#	A049	B049	VCC_CORE	SRESET#	A109	B109	VCC_5
GND	A050	B050	BG#	GND	A110	B110	HRESET#
AACK#	A051	B051	ABB#	Reserved	A111	B111	Reserved
DBB#	A052	B052	DL0	Reserved	A112	B112	Reserved
DL1	A053	B053		Reserved	A113	B113	VCC_3.3
GND	A054	B054	DL2	GND	A114	B114	TDI
DL3	A055	B055	DL4	TRST# VCC_3.3	A115 A116	B115 B116	TDO TCK
DL5 DL7	A056 A057	B056 B057	DL6 VCC_CORE	Reserved	A116 A117	B116 B117	VCC_3.3
GND	A057 A058	B058	DL8	GND	A117 A118	БП	TMS
DL9	A059	B058 B059	DL0 DL10	NC0	A119	B119	NC1
DL11	A059	B059 B060	DL10 DL12	NC2	A020	B120	NC3
DL13	A061	B060	GND	NC4	A121	B120	VCC_3.3

5- GPP : Geek & Panel Port

Riored mainboard provides the standard connects to the front panel of the case you use, but it provides too a amazing 'GEEK' port from a SMBus (that is I2C compatible), and a LCD DISPLAY connector, an other amazing feature of Riored.

Onto the mainboard there are two features that are managed by the I2C and the SMBus. Respectively, they are DIMM Identification (DIMM Id) and the Remote Temperature Sense (RTS).

A- Pinout

The LCD (I2C), the SMBus and the Front Panel signals are grouped on a common connector that is a standart 2 Rows HE13 Male connector with a total of 26 pins (2x13). This last can be prolongated by a standard (DB25 connector + 26 wires ribbon cable) backpanel metal bracket, if needed. The GPP is near the edge of the board.

POWER LED +	1	14	SPEAKER +	
NC	2	15	NC	FRONT PANEL
POWER LED -	3	16	NC	
HDD LED +	4	17	SPEAKER -	
HDD LED –	5	18	I2C +5V	
POWER SW	6	19	I2C SCL	
POWER SW GND	7	20	I2C SDA	LCD
RESET SW	8	21	I2C GND	
RESET SW GND	9	22	Reserved	
SMBus +5V	10	23	+3.3V	
SMBus CLK	11	24	+5VSB	GEEK
SMBus DATA	12	25	EXTSMI#	
SMBus GND	13	26	Reserved	

B- SMBus

The SMBus is provided by the VIPER South Bridge and is used by the RTS (Remote Temperature Sensor) chip and the GPP connector.

This last one gives to geek users the possibility to connect their own small electronic module using the pin 10 to 13 and optionally the pin 23 to 25 that provide +3.3V, +5VSB (standby power supply) and an interrupt signal that is able to wake up the system (going from 'standby' mode to 'full' mode). The geek module should use a HE13/14 Femal connector with one or two rows of four pins.

6- RTS : Remote Temperature Sensor

Riored is equiped with a numerical temperature sensor, the MAX 1669, which monitors the temperature of a PN junction (transistor) placed on the board. The MAX1669 monitors too the temperature of its own body.

This chip sends an IRQ13 to the VIPER if the temperature is too low or too high on one of the two captors. More, the MAX 1669 controls the fan that is present on each CPU. The two fans are managed together.

All RTS registers are accessible by software via the SM Bus of the VIPER.

The task of the software is to initialize and read the mini and maxi temperatures of the RTS, and to select the appropriate speed of the fans.

The software must so wait for a thermical interrupt provided by the CPU die or by the RTS, and it must act on the fan speed and, eventually, reduce the clock of the CPU(s) during a moment...

7- FTP : Flash Transfert Port

RioRed is furnished with a special port to allow you to transfert, from the parallel port of a computer, a new software code into the flash. It is a necessity when debugging a new BIOS code by example.

This port uses a handshaking that is a subset of the one of the known ECP port you can find in all modern computers. The transfer rate is from 500 to 1000 KBytes/s, depending of the software and the hardware at each side.

The FTP port uses a standart HE13 male 2x13 pin connector that has to be prolongated by a standard (DB25 connector + 26 wires ribbon cable) backpanel metal bracket.

In the following explanations, the 'HOST' term describes the PC (Personal Computer) you use to send the code in the Riored flash, and the term 'PERIPH' describes the Riored motherboard.

The link between the HOST and the PERIPH must be done by a standart ECP cable or a cable that uses a minimal connection as described below.

For the standart port, the signal names are doubled : the first is the SPP (Standart Parallel Port) name and the second is the ECP (Extended Capabilities Parallel Port).

A- SPP/ECP standart connector (backpanel Female DB25)

Bold signal are used by FTP handshaking

SPP	ECP	IO	SPP	ECP	Ю
1 Strobe#	HostCLK	Out	14 Autofeed#	HostACK	Out
2 Data 0	Data 0	I/O	15 Fault#	PeriphREQ	In
3 Data 1	Data 1	I/O	16 Init#	ReversREQ#	Out
4 Data 2	Data 2	I/O	17 Select_In#	1284 Active	Out
5 Data 3	Data 3	I/O	18 Gnd		
6 Data 4	Data 4	I/O	19 Gnd		
7 Data 5	Data 5	I/O	20 Gnd		
8 Data 6	Data 6	I/O	21 Gnd		
9 Data 7	Data 7	I/O	22 Gnd		
10 /Ack	PeriphCLK	In	23 Gnd		
11 Busy	PeriphACK	In	24 Gnd		
12 PError	ACKReverse#	In	25 Gnd		
13 Select	X-flag	In			

B- RIORED FTP connector - Backpanel Female DB25

1	HostCLK	Out	14	nc
2	Data 0	I/O	15	nc
3	Data 1	I/O	16	nc
4	Data 2	I/O	17	nc
5	Data 3	I/O	18	Gnd
6	Data 4	I/O	19	Gnd
7	Data 5	I/O	20	Gnd
8	Data 6	I/O	21	Gnd
9	Data 7	I/O	22	Gnd
10	PeriphCLK	In	23	Gnd
11	nc		24	Gnd
12	ACKReverse#	In	25	Gnd
13	FTP Active	In		

C- RIORED FTP connector – HE13 Male 2x13 pins on the motherboard.

1	HostCLK	Out	14	nc
2	Data 0	I/O	15	nc
3	Data 1	I/O	16	nc
4	Data 2	I/O	17	nc
5	Data 3	I/O	18	Gnd
6	Data 4	I/O	19	Gnd
7	Data 5	I/O	20	Gnd
8	Data 6	I/O	21	Gnd
9	Data 7	I/O	22	Gnd
10	PeriphCLK	In	23	Gnd
11	nc		24	Gnd
12	ACKReverse#	In	25	Gnd
13	FTP Active	In	26	nc

D-LINK CABLE

You have to use a ECP cable or to construct yourself your cable by connecting the following pins of two Male DB25 connectors :

Host Riored

11031	11010	
1	10	Host to Periph CLK
2		2 Data 0
3	3	Data 1
4	4	Data 2
5	5	Data 3
6	6	Data 4
7	7	Data 5
8	8	Data 6
9	9	Data 7
10	1	Periph to Host CLK
16	12	Host to Periph Reverse signal (Req / Ack)
17	13	FTP active signal from Host
18	18	GND
19	19	GND
20	20	GND To ensure good transferts,
21	21	GND it is important to connect all the Ground (pin 18 to 25) wires !
22	22	GND Use of a Ground Shielded cable is recommended.
23	23	GND The lengh of the cable should be reasonable : 2 meters
24	24	GND
25	25	GND

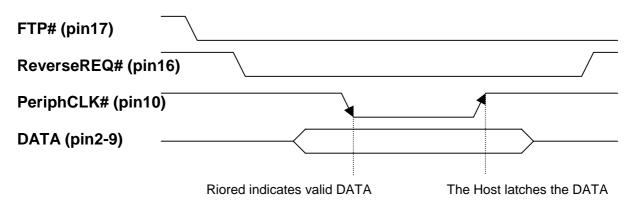
Warning : a such minimal cable is not symetrical ! The left connector must be connected to the HOST and the right connector must be connected to Riored. To avoid this problem you have to add the connections 12 to 16 and 13 to 17 (left to right order).

E- FTP CYCLES

The FTP handshaking uses a subset of the ECP handshaking. Like with ECP, the HostCLK is used, but the PeriphACK is not used to confirm the transfert.

There is 2 cycles that must be distinguished : Forward (Write) and Reverse (Read).

Forward cycle is used to send ADDresses to the flash (Write and Read cycles) and to send DATA for write cycles. **Reverse cycle** is used only to receive from Riored the DATA from the Flash in a Read cycle (i.e. the second step of the Flash 'Program & verify' command).


Figure of the FTP Forward Cycle (Write) – 1 byte

FTP# (pin17)		
ReverseREQ# (pir	16)	
HostCLK# (pin 1)		
DATA (pin 2-9)		
	Host indicates valid DATA	Riored latches the DATA

Steps :

- 1- Data is placed on data lines (D0-D7) by Host.
- 2- Host indicates valid data by asserting HostCLK# low (pin 1 on the HOST).
- 3- Host de-asserts HostCLK# high. Positive edge is used by Riored to shift data.
- 4- Data is removed of data lines by Host.

Figure of the FTP Reverse Cycle (Read) – 1 byte

Steps :

- 1- Host asserts ReverseREQ# to indicate a reverse (read) cycle.
- 2- Assuming the address has already been sent with write cycles, Riored places the data on data lines.
- 3- Riored (Periph) indicates valid data by asserting PeriphCLK# low.
- 4- Riored de-asserts PeriphCLK# high. Positive edge is used by Host to shift data.
- 5- Host de-asserts ReverseREQ# to end the reverse cycle.
- 6- Data is removed of data lines by Riored.
- 7- Host de-asserts ReverseREQ# to return to the Forward mode (write).

8- DC-DC VOLTAGE REGULATORS

RIORED has two DC-DC switching regulators, VR1 and VR2. The Evaluation board (R.1) don't need a second regulator (VR2)

VR1furnishes the CPU CORE voltage from 1.3 to 3.5 V with current up to 35A. It is selectable with 5 CORE_VID pins on the –SLOT-P. VR2, not needed on Riored R.1, furnishes a fixed 2.5V, that may evoluate to 1.8V on future Riored 2 model.

CPU VOLTAGE (VR1) IDENTIFICATION CODE 0 = connected to GND / 1 = open

VID4 0	VID3 1	VID2 1	VID1 1	VID0 1	VCC_CORE 1.30 V	VID4 1	VID3 1	VID2 1	VID1 1	VID0 1	VCC_CORE 0 V (no CPU)
0	1	1	1	0	1.35 V	1	1	1	1	0	2.1 V
0	1	1	0	1	1.40 V	1	1	1	0	1	2.2 V
0	1	1	0	0	1.45 V	1	1	1	0	0	2.3 V
0	1	0	1	1	1.50 V	1	1	0	1	1	2.4 V
0	1	0	1	0	1.55 V	1	1	0	1	0	2.5 V
0	1	0	0	1	1.60 V	1	1	0	0	1	2.6 V
0	1	0	0	0	1.65 V	1	1	0	0	0	2.7 V
0	0	1	1	1	1.70 V	1	0	1	1	1	2.8 V
0	0	1	1	0	1.75 V	1	0	1	1	0	2.9 V
0	0	1	0	1	1.80 V	1	0	1	0	1	3.0 V
0	0	1	0	0	1.85 V	1	0	1	0	0	3.1 V
0	0	0	1	1	1.90 V	1	0	0	1	1	3.2 V
0	0	0	1	0	1.95 V	1	0	0	1	0	3.3 V
0	0	0	0	1	2.00 V	1	0	0	0	1	3.4 V
0	0	0	0	0	2.05 V	1	0	0	0	0	3.5 V

1- RIORED 1	CPC710-100 + IBM PPC750cx ((on-chip L2 Cache)
-------------	-----------------------------	--------------------

	Source	Voltage
CPU CORE	VR1	1.8V
CPU BUS	VR2	2.5V

2- RIORED 1 CPC710-100 + IBM PPC750cx (on-chip L2 Cache)

	Source	Voltage
CPU CORE	VR1	1.8V
CPU BUS	VR2	2.5V

3- RIORED 2 QUASAR II + IBM PPC750cx/cxe (on-chip L2 Cache)

	• -	-
	Source	Voltage
CPU CORE	VR1	1.8V
CPU BUS	VR2	2.5V

9- PARTS REFERENCES

PROCESSORS

SONY ?

HOLDER HL25-F/P BATTERY CR2025

PRODUCER	PRODUCT	ORDERING REF.	SPEED	COMMENTS	
IBM MOTOROLA MOTOROLA	PPC750L MPC750P G3 MPC7400 G4 MPC7400 G4 MPC7400 G4	IBM25PPC750L-GB50 XPC750PRX400RE XPC7400RX?? XSC7400RX400PE XSC7400RX400NG	0A2T 300-500 366-450 300-450 400 400	Pid8p copper P release : 2.0 1.8-2.1V core 2.15V core 2.10V core	5V core
L2 CACHE PRODUCER	E MEMORIE PRODUCT	ES ORDERING REF.	SPEED	COMMENTS	
IBM	L2 128Kx36	IBM043641WLAD	3.3/3.7/4/5/7	Late Write – B	GA – 3.3/3.3-2.5
IBM IBM IBM	L2 256K x36 L2 256K x36 L2 128Kx36	IBM0436A86SQKA IBM0436A81DLAB IBM0436A41DLAB			– 3.3/3.3 with self LATE - 3.3/1.9 with self LATE - 3.3/1.9
MOTOROLA MOTOROLA	L2 256K x36 L2 128Kx36	MCM63R836A MCM63R736			- FC-BGA – 3.3/HSTL - FC-BGA – 3.3/HSTL
MOTOROLA MOTOROLA MOTOROLA MOTOROLA	L2 256K x36 L2 128Kx36 L2 128Kx 32 L2 128Kx 32	MCM63P837 MCM65P737 MCM65P733 MCM63P733B	225/200/166 250/225/200 250/225/200 250/225/200	Pip. Burst R/R- Pip. Burst R/R-	- TQFP/PBGA – 3.3/3.3-2.5 - TQFP/PBGA – 3.3-1.8/1.8 - TQFP – 1.8/1.8 - TQFP – 3.3/3.3-2.5
VOLTAGE PRODUCER	REGULAT	ORS ORDERING REF.	COMMENTS		
MAXIM NATIONAL NATIONAL	MAX1638 LM2636 LM2637	MAX1638 LM2636 LM2637M	5-Bit VID/35A 5-Bit VID/20A 5-Bit VID/20A+	2 linears	3.85\$/1K 1.60\$/1K tube of 36 2.10\$/1K tube of 36
POWER A	POWER ATX CONNECTOR PRODUCER PRODUCT ORDERING REF. COMMENTS				
MOLEXMB cor	nn.	39-29-9202	See w/ or w/o p	bigs	
USB CON PRODUCER	INECTOR PRODUCT	ORDERING REF.	COMMENTS		
MOLEXDouble	Stack	87525-0001			
DIMM COI PRODUCER	NNECTOR PRODUCT	ORDERING REF.	COMMENTS		
MOLEX MOLEX AMP	DIMM168 DIMM168 DIMM168	71251-0012 71736-0011 179711-2	Plastic pegs / 2 Metal pegs	2.59\$ -	
FCI FCI FCI	DIMM168 DIMM168 DIMM168	91145-60002 91145-61002 91145-61022	Platique pegs / Noir Metal pegs / Noir Metal pegs / Ivoire		
LITHIUM E	BATTERY &	• HOLDER ORDERING REF.	COMMENTS		

CLOCK DRIVERS / GENERATORS

PRODUCER	PRODUCT	ORDERING REF.	COMMENTS
TI	CDC924	CDC924DL	SSOP 56
TI	CDC2509B	CDC2509BPW	TSSOP 24

LOGIC

PRODUCER	PRODUCT	ORDERING REF.	COMMENTS
TI	ALVCH162268	74ALVCH162268DL	SSOP 56
TI	AHCT04	74AHCT04D	SO 14
TI	AHCT1G04	74AHCT1G04DBV	SOT-23 5 pins
TI	AHCT1G32	74AHCT1G32DBV	SOT-23 5 pins

SOCKET 7 (321 pins)

PRODUCER	PRODUCT	ORDERING REF.	COMMENTS
AMP	Socket 7	916715-1/2/3	